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Abstract—Under consideration are some adaptive mirror descent algorithms for the problems of
minimization of a convex objective functional with several convex Lipschitz (generally, nonsmooth)
functional constraints. It is demonstrated that the methods are applicable to the objective functionals
of various levels of smoothness: The Lipschitz condition holds either for the objective functional itself
or for its gradient or Hessian (while the functional itself can fail to satisfy the Lipschitz condition).
The main idea is the adaptive adjustment of the method with respect to the Lipschitz constant of
the objective functional (its gradient or Hessian), as well as the Lipschitz constant of the constraint.
The two types of methods are considered: adaptive (not requiring the knowledge of the Lipschitz
constants neither for the objective functional nor for constraints) and partially adaptive (requiring
the knowledge of the Lipschitz constant for constraints). Using the restart technique, some methods
are proposed for strongly convex minimization problems. Some estimates of the rate of convergence
are obtained for all algorithms under consideration in dependence on the level of smoothness of
the objective functional. Numerical experiments are presented to illustrate the advantages of the
proposed methods for some examples.
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INTRODUCTION

The problems of constrained minimization of convex smooth and nonsmooth functionals arise
in many areas of modern large-scale optimization and its applications [1, 2]. There are numerous
methods for these problems among which we mention the bundle-level method [3] and the penalty
function method [4–6]. The mirror descent method (MDM) [7–9] traces its origin to the usual gradient
descent and can be well considered as a rather simple method for the problems of nonsmooth convex
optimization. The present article is dedicated to some adaptive mirror descent methods for the convex
programming problems with Lipschitz constraints.

Note that the constraint functionals, in general, may be nonsmooth (nondifferentiable), and so it is
natural to consider subgradient methods. The methods using the subgradients of nonsmooth convex
functions have been actively developed for several decades. These studies stem from the well-known
pioneering works one of which is devoted to the gradient method for unconditional problems with the
Euclidean distance [10], and the other, to its generalization for the problems with constraints [11].

In [11] the idea is proposed of switching steps between the direction of the subgradient of the objective
functional and the direction of a subgradient of a constraint. Generalization of the gradient descent
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558 STONYAKIN et al.

method to the problems with non-Euclidean distance is called the method of mirror descent. This
method is proposed in [8, 9] for the problems without constraints (see also [7]). The mirror descent
for the problems with functional constraints is proposed in [9] (see also [12]). In this case, as a rule,
to find the step size and stopping criterion for the mirror descent, it is necessary to know the value
of the Lipschitz constant of the objective functional, and also of the functional constraints. There are
also methods with adaptive meshsize selection, reviewed in [13] for the problems without constraints
and in [12], for the problems with constraints. Recently in [14] some mirror descent algorithms, optimal
from the point of view of lower oracle estimates, are proposed for convex programming problems with
Lipschitz constraint functionals; these algorithms involve adaptive step selection and adaptive stopping
criteria. Modifications of these methods for the problems with several convex functional constraints are
analyzed in [15, 16].

In this article, some mirror descent algorithms are presented for the problems of minimization of
a convex functional f on some convex closed set with a constraint generated by a convex, Lipschitz
and nonsmooth functional g(x) ≤ 0. It is important that the estimates are obtained for the convergence
rate of the methods for objective functionals of various smoothness levels. In particular, the objective
functional f may not satisfy the Lipschitz property, but have a Lipschitz-continuous gradient. For
example, quadratic functionals do not satisfy the usual Lipschitz property (or the Lipschitz constant
is rather large) but they have a Lipschitz-continuous gradient. We can also consider nonsmooth convex
functions, equal to the maximum of a finite set of differentiable functionals with a Lipschitz-continuous
gradient. For example, let Ai (i ∈ 1,m) be positively semidefinite matrices (x�Aix ≥ 0 for every x ∈ X,
where X is the domain of the problem); and let the objective functional be

f(x) = max
i=1,m

fi(x), (1)

where

fi(x) =
1
2
〈Aix, x〉 − 〈bi, x〉 + ci, i = 1,m, (2)

for some fixed bi ∈ R
n and ci ∈ R, for all i = 1,m. Note that functionals of the form (1)–(2) arise in

the problems of designing mechanical structures, Truss Topology Design, with weighted bars [17]. For
the problems of minimization of functionals of this type in the presence of convex Lipschitz constraints
in [14, 15, 18], on the basis of the methodology of Nesterov’s works [3, 17], some new adaptive mirror
descent algorithms are proposed and their optimality is justified. Some of these results are published
in [18]. The present paper is devoted to the exposition of the main results of the report [18], as well as the
development of the results of [14, 15, 18] in the following directions:

Firstly, from the point of view of lower oracle estimates, the optimality of the methods of [14, 15, 18]
is proved for the problems with convex Lipschitz objective functional as well as for the problems with
a Lipschitz Hessian in presence of convex Lipschitz constraints.

Secondly, on the basis of the technique of the restart of methods from [14, 18] (for convex problems),
some new mirror descent algorithms are proposed for minimization problems for a μ-strongly convex
functional f with nonpositive, μ-strongly convex, and Lipschitz nonsmooth constraint functional g.
Note that the technique of restart of a method for convex problems to accelerate convergence for strongly
convex problems stems from the 1980s (see [9, 19]). The technique of this type of was used in [20] to
substantiate a higher rate of convergence of the method of mirror descent for a strongly convex objective
functional in the problems without constraints.

Thirdly, we describe a series of numerical experiments illustrating the advantages of the proposed
methods over their analogs. In particular, it is shown that, for the Fermat–Torricelli–Steiner problem
(the objective functional satisfies the Lipschitz condition with constant 1) with quadratic constraints, the
proposed method can work much faster than a similar adaptive method which is also optimal in terms of
lower oracle estimates on a class of problems with Lipschitz objective functional [14, Section 3.1]. The
calculations are presented, which illustrate some of the advantages of the proposed methods for strongly
convex problems.

The article consists of an introduction and four main sections. In Section 1, we give some auxiliary
information, the basic concepts for the mirror descent method, and also describe the adaptive Algo-
rithm 1 of mirror descent from [14, Section 3.3] and partially adaptive Algorithm 2 [18]. In Section 2,
we consider new statements about the estimates of the rate of convergence of these methods and justify

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 13 No. 3 2019
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their optimality on the class of problems under consideration under various assumptions on the level
of smoothness of the objective functional. Section 3 is dedicated to methods for minimizing strongly
convex functions with restarts of Algorithm 1 (Algorithm 3) and Algorithm 2 (Algorithm 4), as well as
the corresponding theoretical estimates for the convergence rate. In Section 4, we give and discuss the
results of numerical experiments illustrating certain advantages of the proposed methods.

1. ADAPTIVE AND PARTIALLY ADAPTIVE ALGORITHM OF THE MIRROR DESCENT
FOR THE PROBLEMS WITH CONVEX FUNCTIONALS

Let us start with the formulation of the optimization problems under consideration and present the
necessary concepts and results. Let (E, ‖ · ‖) be a finite-dimensional normed vector space, and let E∗

be a dual space of E with the standard norm

‖y‖∗ = max
x

{〈y, x〉, ‖x‖ ≤ 1},

where 〈y, x〉 is the value of the continuous linear functional y at x ∈ E.
From now on, we will assume that X ⊂ E is a closed convex set. Consider two convex subdifferen-

tiable functionals f, g : X → R. Suppose that g satisfies the Lipschitz condition with respect to the norm
‖ · ‖; i.e., there is Mg > 0 such that

|g(x) − g(y)| ≤ Mg‖x − y‖ (3)

for all x, y ∈ X. It means that at every point x ∈ X there is a subgradient ∇g(x), and ‖∇g(x)‖∗ ≤ Mg.
Recall that for a differentiable functional g the subgradient ∇g(x) coincides with the usual gradient.

In the present work, the following type of optimization problem will be considered:

f(x) → min, x ∈ X, (4)

g(x) ≤ 0, (5)

if f and g satisfy the above conditions. We also make an assumption about the solvability of problem
(4)–(5). Let x∗ denote the exact solution of (4)–(5). Our goal is to propose a method that allows us to
find some ε-solution x̂ ∈ X of the problem by finitely many steps:

f(x̂) − f(x∗) ≤ ε for g(x̂) ≤ ε.

Everywhere below we assume that the initial approximation x0 for all methods is chosen so that

d(x0) = min
x∈X

d(x).

Note that some results of the present work (Section 3) are devoted to the formulation of the problem
for μ-strongly convex subdifferentiable functionals f, g : X → R; i.e.

f(y) ≥ f(x) + 〈∇f(x), y − x〉 +
μ

2
‖y − x‖2 ∀ x, y ∈ X, (6)

and (6) holds for g (with the same strong convexity parameter μ).
For further reasoning, we need some auxiliary concepts (for example, see [13]). Introduce the so-

called prox function d : X → R possessing the property of continuous differentiability and 1-strong
convexity with respect to ‖ · ‖. Let a constant Θ0 > 0 be such that d(x∗) ≤ Θ2

0. Note that if there is a set
of solutions X∗ then we assume that

min
x∗∈X∗

d(x∗) ≤ Θ2
0.

Given x, y ∈ X, we consider the corresponding Bregman divergence:

V (x, y) = d(y) − d(x) − 〈∇d(x), y − x〉.
Depending on the statement of a specific problem, various approaches are possible for defining the

prox structure of the problem and the corresponding Bregman divergence: Euclidean, entropy, and many
others (for example, see [13]). We define the projection operator in the standard fashion:

Mirr x(p) = arg min
u∈X

{

〈p, u〉 + V (x, u)
}

for every x ∈ X and p ∈ E∗.
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We assume also that Mirr x(p) is easily computable.
Recall the well-known statement (for example, see [13]):

Lemma 1. Let f : X → R be a subdifferentiable convex functional on the convex set X and let
z = Mirr y(h∇f(y)) for some y ∈ X. Then for all x ∈ X and h > 0 the following holds:

h〈∇f(y), y − x〉 ≤ h2

2
‖∇f(y)‖2

∗ + V (y, x) − V (z, x). (7)

Let us proceed to description of the methods under consideration [14, 18] for problem (4)–(5). Note
that it is necessary to find a suitable point x̂ for which f(x̂) − f(x∗) ≤ ε (or C · ε for some constant
C > 0) under the condition g(x) ≤ ε.

As can be seen from the listings of the algorithms given in this section, the needed point is selected
among the points xk for which g(xk) ≤ ε. Therefore, we will call step k productive if g(xk) ≤ ε. If
the reverse inequality g(xk) > ε holds then step k will be called unproductive. Recall the following
algorithm of adaptive mirror descent [14, Section 3.3] for problem (4)–(5):

Algorithm 1 (adaptive mirror descent)

Input: accuracy ε > 0; initial point x0; Θ0; X; d(·).
Output: x̄N := arg min

xk, k∈I
f(xk).

1: I := ∅

2: N ← 0
3: repeat
4: if g(xN ) ≤ ε then

5: hN ← ε

‖∇f(xN )‖∗
6: xN+1 ← Mirr xN (hN∇f(xN)) � “productive steps”
7: N → I
8: else
9: (g(xN ) > ε) →
10: hN ← ε

‖∇g(xN )‖2
∗

11: xN+1 ← Mirr xN (hN∇g(xN )) � “unproductive steps”
12: endif
13: N ← N + 1

14: until Θ2
0 ≤ ε2

2

(

|I| +
∑

k �∈I

1
‖∇g(xk)‖2

∗

)

By analogy with [3], we introduce for the objective functional f at y ∈ X the following auxiliary
quantity:

vf (x, y) =

{
〈

∇f(x)
‖∇f(x)‖∗ , x − y

〉

, ∇f(x) = 0,

0, ∇f(x) = 0,
x ∈ X. (8)

We allow that, during the method application, an arbitrary subgradient ∇f(x) can be used.
To estimate the convergence rate of Algorithm 1, the following was proved in [14]:

Theorem 1. Suppose that inequality (3) holds and the constant Θ0 > 0 is given such that
d(x∗) ≤ Θ2

0. If ε > 0 is given then Algorithm 1 makes at most

N =
⌈

2max
{

1,M2
g

}

Θ2
0

ε2

⌉

(9)
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iterations, after that it stops and

min
k∈I

vf (xk, x∗) < ε. (10)

A partially adaptive algorithm can be proposed for Problem (4)–(5) [18]. As distinct from Algorithm 1,
the adaptive step is selected only for productive iterations, while the stopping criterion is nonadaptive:

Algorithm 2 (partially adaptive version of Algorithm 1)

Input: accuracy ε > 0; initial point x0; Θ0; X; d(·).
Output: x̄N := arg min

xk,k∈I
f(xk).

1: x0 = arg min
x∈X

d(x)

2: I := ∅

3: N ← 0
4: repeat
5: if g(xN ) ≤ ε then 6: hN ← ε

Mg · ‖∇f(xN )‖∗
7: xN+1 ← Mirr xN (hN∇f(xN)) � “productive steps”
8: N → I
9: else
10: (g(xN ) > ε) →
11: hN ← ε/M2

g

12: xN+1 ← Mirr xN (hN∇g(xN )) � “unproductive steps”
13: endif
14: N ← N + 1
15: until N ≥

⌈

2M2
g Θ2

0/ε
2
⌉

The following analog of Theorem 1 is true (also see [18]):

Theorem 2. Let ε > 0 be given and let Algorithm 2 make

N =
⌈

2M2
g Θ2

0

ε2

⌉

(11)

iterations. Then

min
k∈I

vf (xk, x∗) <
ε

Mg
. (12)

Remark 1. Let us consider the situation when the partially adaptive version of the algorithm
can be more advantageous than the adaptive algorithm. For example, let there be no possibility to
precisely determine the (sub)gradient and thus the norm ‖∇g(xk)‖∗ for the constraint for one or more
unproductive steps, and let only some approximation of this norm be available as ‖∇g(xk)‖∗ = αk ± δk,
where δk is the approximation accuracy. By Lemma 1, at each unproductive step xk, we have

hk(g(xk) − g(x∗)) ≤
h2

k

2
‖∇g(xk)‖2

∗ + V (xk, x∗) − V (xk+1, x∗). (13)

If αk = 0 or αk → 0 then we cannot use (13) for

hk =
ε

‖∇g(xk)‖2
∗

because this may lead to a large error. In this case, the nonadaptive selection of the step

hk =
ε

M2
g

in Algorithm 2 is more suitable for solving problem (4)–(5).
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2. ESTIMATES FOR THE CONVERGENCE RATE OF THE METHODS
AND THEIR OPTIMALITY

Consider some specific estimates for the convergence rate of the methods under consideration, which
justify their optimality from the viewpoint of the theory of oracle estimates, tracing back to the famous
monograph by Nemirovski and Yudin [9]. The constraint functionals are assumed to be Lipschitz and,
in general, nonsmooth. Therefore, to establish the optimality of the method in terms of lower oracle
estimates, we need to show [13] that, to achieve the required accuracy ε of the solution of problem
(4)–(5), it suffices to carry out O(ε−2) iterations of the method, and thereafter the calculation of
a (sub)gradient of the objective functional or constraint is implemented. In this work, various classes
of objective functionals are considered. As before, we denote by x∗ the solution to problem (4)–(5). The
following auxiliary statement will be used (see, for example, [3, 17]):

Lemma 2. We introduce the function

ω(τ) = max
x∈X

{f(x) − f(x∗) | ‖x − x∗‖ ≤ τ}, (14)

where τ is a positive number. Then for every y ∈ X we have

f(y) − f(x∗) ≤ ω(vf (y, x∗)). (15)

By Lemma 2, it is shown in [18], how, using Theorem 1, we can estimate the convergence rate of
Algorithm 2 if the objective functional f is differentiable and its gradient satisfies the Lipschitz condition:

‖∇f(x) −∇f(y)‖∗ ≤ L‖x − y‖ ∀ x, y ∈ X. (16)

Then for arbitrary x ∈ X the following is true [3]:

f(x) ≤ f(x∗) + ‖∇f(x∗)‖∗‖x − x∗‖ + 1/2 L‖x − x∗‖2;

and hence,

min
k∈I

f(xk) − f(x∗) ≤ min
k∈I

{

‖∇f(x∗)‖∗‖xk − x∗‖ +
1
2

L‖xk − x∗‖2

}

,

min
k∈I

f(xk) − f(x∗) ≤ ‖∇f(x∗)‖∗
ε

Mg
+

L

2
ε2

M2
g

.

The last inequality allows us to formulate the following statement for some class of generally nonsmooth
objective functionals [18]:

Corollary 1. Suppose that

f(x) = max
i=1,m

fi(x),

where fi are differentiable at each x ∈ X and

‖∇fi(x) −∇fi(y)‖∗ ≤ Li‖x − y‖ ∀x, y ∈ X.

Then, after

N =
⌈

2M2
g Θ2

0/ε
2
⌉

steps of Algorithm 2, the following holds:

min
k∈I

f(xk) − f(x∗) ≤ ‖∇f(x∗)‖∗
ε

Mg
+

L

2
ε2

M2
g

, L = max
i=1,m

Li.

Remark 2. We consider conditional problems, and therefore it is not necessary that ‖∇f(x∗)‖∗ = 0.

We describe the estimates for the convergence rate of Algorithm 1 and Algorithm 2 for the classes of
objective functionals which were not considered in [18].
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Remark 3. Let an objective functional f : X → R satisfy the Lipschitz condition

|f(x) − f(y)| ≤ Mf‖x − y‖ ∀ x, y ∈ X. (17)

Then f(x) ≤ f(x∗) + Mf‖x − x∗‖ for arbitrary x ∈ X; and so,

min
k∈I

f(xk) − f(x∗) ≤ min
k∈I

Mf{‖xk − x∗‖}.

Therefore, we have the following

Corollary 2. Let f satisfy the Lipschitz condition (17) on X. Then
(1) after

N =
⌈

2max
{

1,M2
g

}

· Θ2
0/ε

2
⌉

steps of Algorithm 1, the inequality

min
k∈I

f(xk) − f(x∗) ≤ Mfε

is true;
(2) after

N =
⌈

2M2
g Θ2

0/ε
2
⌉

steps of Algorithm 2, the following holds:

min
k∈I

f(xk) − f(x∗) ≤
Mf

Mg
ε.

Remark 4. Let the objective functional f : X → R be twice differentiable on X, and let f have the
Lipschitz Hessian; i.e.,

‖∇2f(x) −∇2f(y)‖∗ ≤ L‖x − y‖ ∀ x, y ∈ X. (18)

In this case, for every x ∈ X the following holds (see [3, Lemma 1.2.4]):
∣

∣

∣

∣

f(x) − f(x∗) − 〈∇f(x∗), x − x∗〉 −
1
2
〈∇2f(x∗)(x − x∗), x − x∗〉

∣

∣

∣

∣

≤ L

6
‖x − x∗‖3,

whence,

f(x) ≤ f(x∗) + ‖∇f(x∗)‖ · ‖x − x∗‖ +
1
2
‖∇2f(x∗)(x − x∗)‖ · ‖x − x∗‖ +

L

6
‖x − x∗‖3.

Therefore, for an arbitrary x ∈ X we have

f(x) ≤ f(x∗) + ‖∇f(x∗)‖ · ‖x − x∗‖ +
1
2
‖∇2f(x∗)‖Fro · ‖x − x∗‖2 +

L

6
‖x − x∗‖3,

where ‖A‖Fro = tr(A�A) is the Frobenius norm of the matrix A ∈ R
m×n. Then

min
k∈I

f(xk) − f(x∗) ≤ min
k∈I

{

‖∇f(x∗)‖ · ‖xk − x∗‖

+
1
2
‖∇2f(x∗)‖Fro · ‖xk − x∗‖2 +

L

6
‖xk − x∗‖3

}

.

Combining the statements of Theorem 1 and Lemma 2, we obtain

f(x) − f(x∗) ≤ ‖∇f(x∗)‖∗ · ε +
1
2
‖∇2f(x∗)‖Fro · ε2 +

L

6
ε3,

and, by analogy, from Theorem 2 we have

f(x) − f(x∗) ≤ ‖∇f(x∗)‖∗ ·
ε

Mg
+

1
2
‖∇2f(x∗)‖Fro ·

ε2

M2
g

+
L

6
ε3

M3
g

.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 13 No. 3 2019



564 STONYAKIN et al.

Therefore, the following is true:

Corollary 3. Let f be twice differentiable on X, and let f have a Lipschitz Hessian; and so,
(18) is true. Then

(1) after

N =
⌈

2max
{

1,M2
g

}

Θ2
0/ε

2
⌉

steps of Algorithm 1, we obtain

min
k∈I

f(xk) − f(x∗) ≤ ‖∇f(x∗)‖∗ · ε +
1
2
‖∇2f(x∗)‖Fro · ε2 +

L

6
ε3;

(2) after

N =
⌈

2M2
g Θ2

0/ε
2
⌉

steps of Algorithm 2, the following holds:

min
k∈I

f(xk) − f(x∗) ≤ ‖∇f(x∗)‖∗
ε

Mg
+

1
2
‖∇2f(x∗)‖Fro ·

ε2

M2
g

+
L

6
ε3

M3
g

.

Similar estimates can be written for some class of problems with nonsmooth objective functionals:

Corollary 4. Suppose that

f(x) = max
i=1,m

fi(x),

where fi is twice differentiable at each point x ∈ X and

‖∇2f(x) −∇2f(y)‖∗ ≤ Li‖x − y‖ ∀ x, y ∈ X.

Then
(1) after

N =
⌈

2max
{

1,M2
g

}

Θ2
0/ε

2
⌉

steps of Algorithm 1, the following holds:

min
k∈I

f(xk) − f(x∗) ≤ ‖∇f(x∗)‖∗ · ε +
1
2
‖∇2f(x∗)‖Fro · ε2 +

L

6
ε3, L = max

i=1,m
Li;

(2) after

N =
⌈

2M2
g Θ2

0/ε
2
⌉

steps of Algorithm 2, the following is true:

min
k∈I

f(xk) − f(x∗) ≤ ‖∇f(x∗)‖∗ ·
ε

Mg
+

1
2
‖∇2f(x∗)‖Fro ·

ε2

M2
g

+
L

6
ε3

M3
g

, L = max
i=1,m

Li.

3. ON ACCELERATION OF THE METHODS OF MIRROR DESCENT
FOR STRONGLY CONVEX PROBLEMS

In this section we consider the problem

f(x) → min, g(x) ≤ 0, x ∈ X, (19)

on assuming (3) as well as strong convexity of f and g with the same parameter μ > 0. Let us slightly
modify the assumptions on the prox function and assume d(x) to be bounded on the unit ball of the
selected norm ‖ · ‖:

d(x) ≤ Θ2
0 ∀x ∈ X : ‖x‖ ≤ 1. (20)
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We also assume that for x0 ∈ X there is R0 > 0 such that ‖x0 − x∗‖2 ≤ R2
0.

We will consider the methods for finding an ε-solution x̂ (19):

f(x̂) − f(x∗) ≤ ε, g(x̂) ≤ ε.

To construct some methods for solving problem (19) under given assumptions, we use the idea of restarts
of Algorithms 1 and 2. Consider an auxiliary statement (for instance, see [21]):

Lemma 3. Let f and g be μ-strongly convex functionals with respect to the norm ‖ · ‖ on X,

x∗ = arg min
x∈X

f(x),

g(x) ≤ 0 for x ∈ X, and

f(x) − f(x∗) ≤ εf , g(x) ≤ εg (21)

for some εf > 0 and εg > 0. Then

μ

2
‖x − x∗‖2 ≤ max{εf , εg}. (22)

Suppose that

f(x) = max
i=1,m

fi(x),

where fi are differentiable at each x ∈ X and have Liptschitz gradient; i.e., there exist Li > 0 such that

‖∇fi(x) −∇fi(y)‖∗ ≤ Li‖x − y‖ ∀ x, y ∈ X. (23)

Consider the function τ : R
+ → R

+ such that

τ(δ) = max
{

δ‖∇f(x∗)‖∗ +
δ2L

2
, δ

}

, L := max
i=1,m

{Li}. (24)

Clearly, τ increases and τ(0) = 0; therefore, for each ε > 0 there exists

ϕ̂(ε) > 0, τ(ϕ̂(ε)) = ε.

Now we propose an adaptive Algorithm 3 for problem (19):

Algorithm 3 (adaptive mirror descent algorithm for strongly convex functionals)

Input: accuracy ε > 0; initial point x0; Θ0 such that d(x) ≤ Θ2
0 ∀x ∈ X : ‖x‖ ≤ 1; X; d(·); the strong

convexity parameter μ; R0 satisfies the estimate‖x0 − x∗‖2 ≤ R2
0.

1: Set d0(x) = d

(

x − x0

R0

)

.

2: Set p = 1.
3: repeat
4: Set R2

p = R2
0 · 2−p.

5: Set εp = μR2
p

2 .
6: Set xp � output of Algorithm 1 with accuracy ϕ̂(εp), prox function dp−1(·), and Θ2

0

7: dp(x) ← d
(

dx−xp

Rp

)

.
8: Set p = p + 1.

9: until p > log2
μR2

0

2ε
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Theorem 3. Suppose that f and g are functionals μ-strongly convex on X ⊂ R
n, f has

Liptschitz gradient satisfying (23), and d(x) ≤ Θ2
0 for all x ∈ X such that ‖x‖ ≤ 1. Let the

initial approximation x0 ∈ X and the number R0 > 0 be given so that ‖x0 − x∗‖2 ≤ R2
0. Then for

p̂ =
⌈

log2(μR2
0)/(2ε)

⌉

the output xp̂ is an ε-solution to problem (19) and also

‖xp̂ − x∗‖2 ≤ 2ε/μ.

Wherein, the total number of iterations of Algorithm 1 during implementation of Algorithm 3
does not exceed

p̂ +
p̂
∑

p=1

2Θ2
0 max

{

1,M2
g

}

ϕ̂2(εp)
, where εp =

μR2
0

2p+1
.

Proof. The function dp(x) = d
(

(x − xp)/Rp

)

defined in Algorithm 3 is 1-strongly convex with respect
to the norm ‖ · ‖/Rp for all p ≥ 0. Using the mathematical induction, it is possible to prove that

‖xp − x∗‖2 ≤ R2
p ∀ p ≥ 0.

For p = 0 this statement is obvious in view of the choice of x0 and R0.

Assume that for some p we have ‖xp − x∗‖2 ≤ R2
p. We prove that ‖xp+1 − x∗‖2 ≤ R2

p+1. Since
dp(x∗) ≤ Θ2

0, by Theorem 1, on the (p + 1)th restart after at most Np+1 iterations of Algorithm 1, where

Np+1 =
⌈

2Θ2
0 max

{

1,M2
g

}

ϕ̂2(εp+1)

⌉

,

we arrive at the following inequalities for xp+1 = x̄Np+1 :

f(xp+1) − f(x∗) ≤ εp+1, g(xp+1) ≤ εp+1 for εp+1 = μR2
p+1/2.

Then, by Lemma 3,

‖xp+1 − x∗‖2 ≤ 2εp+1/μ = R2
p+1.

So, for every p ≥ 0 it is proved that

‖xp − x∗‖2 ≤ R2
p =

R2
0

2p
, f(xp) − f(x∗) ≤

μR2
0

2p+1
, g(xp) ≤ μR2

0

2p+1
.

Therefore, when p = p̂ =
⌈

log2(μR2
0)/(2ε)

⌉

, the output xp is the ε-solution of problem (19) and the
following are true:

‖xp − x∗‖2 ≤ R2
p = R2

0/2
p ≤ 2ε/μ.

Suppose that K is the total number of iterations of Algorithm 1 during the operation of Algorithm 3
according to item 6 of the listing, whereas Np is the total number of iterations of Algorithm 1 on the pth
restart. Recall that the function τ : R

+ → R
+ increases, and for each ε > 0 there exists ϕ̂(ε) > 0 such

that τ(ϕ̂(ε)) = ε. Thus,

K =
p̂
∑

p=1

Np =
p̂
∑

p=1

⌈

2Θ2
0 max

{

1,M2
g

}

ϕ̂2(εp)

⌉

≤ p̂ +
p̂
∑

p=1

2Θ2
0 max

{

1,M2
g

}

ϕ̂2(εp)
.

Theorem 3 is proved.

Remark 5. The previous estimate for the number of iterations of Algorithm 1 can be somewhat
specified in the case of ε < 1. In this case, for every δ < 1 we have τ(δ) ≤ Cδ for some constant C.
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Therefore, we can assume that ϕ̂(ε) = ̂C · ε for the corresponding constant ̂C > 0. It means that, on the
(p + 1)th restart of Algorithm 1, after at most

kp+1 =
⌈

2Θ2
0 max

{

1,M2
g

}

R2
p

̂С2ε2
p+1

⌉

(25)

iterations of Algorithm 1, the output xp+1 is guaranteed to satisfy the inequality

f(xp+1) − f(x∗) ≤ ̂C · εp+1, g(xp+1) ≤ εp+1,

where εp+1 = μR2
p+1/2. Then, by Lemma 3,

‖xp+1 − x∗‖2 ≤ 2max{1, ̂C}εp+1

μ
= max{1, ̂C} · R2

p+1.

Thus, for all p ≥ 0

‖xp − x∗‖2 ≤ max{1, ̂C} · R2
p = max{1, ̂C} · R2

0 · 2−p.

At the same time, for every p ≥ 1 the inequalities

f(xp) − f(x∗) ≤ max{1, ̂C} · μR2
0

2
· 2−p, g(xp) ≤ max{1, ̂C} · μR2

0

2
· 2−p.

hold. Thus, p > log2((μR2
0)/(2ε)), then xp will be the (max{1, ̂C}ε)-solution of the problem under

consideration, wherein

‖xp − x∗‖2 ≤ max{1, ̂C} · R2
0 · 2−p ≤ 2ε

μ
.

Let us estimate the total number N of iterations of Algorithm 1. Let p̂ =
⌈

log2((μR2
0)/(2ε))

⌉

. Then,
according to (25), up to multiplication by a constant, we have

N =
p̂
∑

p=1

kp ≤
p̂
∑

p=1

(

1 +
2Θ2

0 max
{

1,M2
g

}

R2
p

ε2
p+1

)

=
p̂
∑

p=1

(

1 +
32Θ2

0 max
{

1,M2
g

}

2p

μ2R2
0

)

≤ p̂ +
64Θ2

0 max
{

1,M2
g

}

2p̂

μ2R2
0

≤ p̂ +
64Θ2

0 max
{

1,M2
g

}

με
.

Consider also the partially adaptive version of Algorithm 3 for problem (19) proposed in [18]:

Algorithm 4 (partially adaptive mirror descent algorithm for strongly convex functionals)

Input: accuracy ε > 0; initial point x0; Θ0 such that d(x) ≤ Θ2
0 ∀x ∈ X : ‖x‖ ≤ 1; X; d(·); the strong

convexity parameter μ; R0 satisfies the estimate ‖x0 − x∗‖2 ≤ R2
0.

1: Set d0(x) = d
(

(x − x0)/R0

)

2: Set p = 1.
3: repeat
4: Set R2

p = R2
0 · 2−p.

5: Set εp = μR2
p/2.

6: Set xp � output of Algorithm 2 with the accuracy ϕ(εp), prox function dp−1(·), and Θ2
0.

7: dp(x) ← d
(

(x − xp)/Rp

)

8: Set p = p + 1.
9: until p > log2

(

μR2
0/(2ε)

)
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Under the conditions of Corollary 1, after stopping of Algorithm 4, the inequalities (21) will be
satisfied for

εf =
ε

Mg
‖∇f(x∗)‖∗ +

ε2L

2M2
g

, εg = ε;

Consider the function τ : R
+ → R

+:

τ(δ) = max
{

δ‖∇f(x∗)‖∗ +
δ2L

2
; δMg

}

.

It is clear that τ increases, τ(0) = 0, so, given ε > 0, there exists ϕ(ε) > 0 such that τ(ϕ(ε)) = ε.

Theorem 4 [18]. Let f and g be functionals μ-strongly convex on X ⊂ R
n and satisfying the

conditions of Corollary 1, and let d(x) ≤ Θ2
0 for all x ∈ X such that ‖x‖ ≤ 1. Suppose that the

initial approximation x0 ∈ X and the number R0 > 0 are given so that ‖x0 − x∗‖2 ≤ R2
0. Then for

p̂ =
⌈

log2
μR2

0

2ε

⌉

the output xp̂ is an ε-solution of problem (19) and

‖xp̂ − x∗‖2 ≤ 2ε
μ

.

Wherein, the total number of iterations of Algorithm 2 during the implementation of Algorithm 4
does not exceed

p̂ +
p̂
∑

p=1

2Θ2
0M

2
g

ϕ2(εp)
, εp =

μR2
0

2p+1
.

Remark 6. Generally speaking, ϕ(ε) depends on ‖∇f(x∗)‖∗ and the Lipschitz constant L for ∇f .
If ‖∇f(x∗)‖∗ < Mg then ϕ(ε) = ε for sufficiently small ε:

ε <
2(Mg − ‖∇f(x∗)‖∗)

L
.

For the other case (‖∇f(x∗)‖∗ > Mg), for all ε > 0 we have

ϕ(ε) =

√

‖∇f(x∗)‖2
∗ + 2εL − ‖∇f(x∗)‖∗

L
.

Remark 7. By analogy with the reasoning in Remark 5 for ε < 1, we can specify the upper estimate
for the number of iterations of Algorithm 5 up to multiplication by a constant:

N = p̂ +
64Θ2

0M
2
g · 2p̂

μ2R2
0

≤ p̂ +
64Θ2

0 · M2
g

με
.

Remark 8. By Corollaries 2 and 4, under the condition ε < 1, the statements of Remarks 5 and 7 can
be easily transferred to the cases where the objective functional f satisfies the Lipschitz condition or the
Lipschitz condition for its Hessian.
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4. NUMERICAL EXPERIMENTS

4.1. Comparison of the Operation Speed of the Methods
for the Fermat–Torricelli-Steiner Problem with Constraints

Note that in [14, Section 3.1] the following adaptive method is also proposed, which is optimal from
the standpoint of lower oracle estimates in the case of problems with a Lipschitz objective functional:

Algorithm 5 (adaptive mirror descent (Lipschitz objective functional))

Input: ε > 0; Θ0 such that d(x∗) ≤ Θ2
0.

Output: x̄N :=

∑

k∈I

xkhk

∑

k∈I

hk

1: x0 = arg min
x∈X

d(x)

2: I := ∅

3: N ← 0
4: repeat
5: if g(xN ) ≤ ε then

6: MN = ‖∇f(xN )‖∗, hN =
ε

M2
N

7: xN+1 = Mirr xN (hN∇f(xN )) � “productive steps”
8: N → I
9: else
10: MN = ‖∇g(xN )‖∗, hN =

ε

M2
N

11: xN+1 = Mirr xN (hN∇g(xN )) � “unproductive steps”
12: endif
12: N ← N + 1

14: until
N−1
∑

j=0

1
M2

j

≥ 2
Θ2

0

ε2

In the present work, an alternative method is considered (Algorithm 1) whose optimality can be
established for conditional problems with a wider class of objective functionals (having a Lipschitz
gradient or a Lipschitz Hessian). But it turns out that in the case of a Lipschitz objective functional,
when we apply Algorithm 5, Algorithm 1 can work faster.

As an example, we present calculations for the well-known Fermat-Torricelli–Steiner problem with
constraints:

Problem. Given points Ak = (a1k, a2k, . . . , a10k) in the 10-dimensional Euclidean space R
10,

find the point x = (x1, . . . , x10) such that the objective function

f(x) :=
10
∑

k=1

√

(x1 − a1k)2 + (x2 − a2k)2 + · · · + (x10 − a10k)2

assumes the minimal value on the set X which is determined by the constraints

g1(x1, . . . , x10) = 2x2
1 + x2

2 + · · · + x2
10 − 1 ≤ 0,

g2(x1, . . . , x10) = x2
1 + 2x2

2 + · · · + x2
10 − 1 ≤ 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g10(x1, . . . , x10) = x2
1 + x2

2 + · · · + 2x2
10 − 1 ≤ 0.
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Table 1. Comparison of Algorithms 1, 5, and 6

ε
Iterations Time, s Iterations Time, s Iterations Time, s

Algorithm 5 Algorithm 1 Algorithm 6

1/2 1659 97 283 15 231 6

1/4 5951 336 899 49 774 22

1/8 22356 1491 3159 180 2850 100

For n = 10 we give an example of the initial approximation x0 = (1, 1, . . . , 1) with the param-
eter Θ0 = 3 when choosing a standard Euclidean prox structure. The coordinates of points Ak =
(a1k, a2k, . . . , a10k) for k = 1, 2, . . . , 10 are chosen as rows of the following matrix A:

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 2 1 4 1 0 4 4 4 3

2 4 3 1 0 2 4 0 4 0

3 2 3 4 3 0 3 4 2 3

0 0 2 0 2 4 4 1 0 0

3 3 4 4 3 0 1 0 4 4

2 2 4 0 4 0 2 2 1 1

0 4 3 4 2 3 3 4 0 2

2 2 1 4 2 1 4 3 0 3

4 1 2 2 3 3 2 1 3 1

3 3 2 2 0 0 4 0 3 4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Note also that it is possible to accelerate the work of Algorithm 1 in case of several constraints due
to the possibility of choosing a suitable constraint for unproductive iterations (see Algorithm 6 proposed
in [15]). The corresponding results are shown in Table 1.

In Table 2 we present a comparison of the operation speed of the methods for the same parameters,
but with nonsmooth functional constraints:

g1(x1, . . . , x10) = 2|x1| + |x2| + · · · + |x10| − 1 ≤ 0,

g2(x1, . . . , x10) = |x1| + 3|x2| + · · · + |x10| − 1 ≤ 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g10(x1, . . . , x10) = |x1| + |x2| + · · · + 11|x10| − 1 ≤ 0.

Table 2. Comparison of Algorithms 1, 5, and 6

ε
Iterations Time, s Iterations Time, s Iterations Time, s

Algorithm 5 Algorithm 1 Algorithm 6

1/2 3709 279 671 29 437 21

1/4 14212 833 2418 103 1970 95

1/8 54655 2980 8979 455 8329 344
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Algorithm 6 (modified adaptive mirror descent)

Input: ε > 0; Θ0 such that d(x∗) ≤ Θ2
0.

Output: x̄N := arg min
xk,k∈I

f(xk).

1: x0 = arg min
x∈X

d(x)

2: I := ∅

3: N ← 0
4: repeat
5: if g(xN ) ≤ ε then

6: hN ← ε

‖∇f(xN )‖∗
7: xN+1 ← Mirr xN (hN∇f(xN )) � “productive steps”
8: N → I
9: else � (gm(N)(xN ) > ε) for some m(N) ∈ {1, . . . ,M}
10: hN ← ε

‖∇gm(N)(xN )‖2
∗

11: xN+1 ← Mirr xN (hN∇gm(N)(xN )) � “unproductive steps”
12: endif
13: N ← N + 1

14: until Θ2
0 ≤ ε2

2

(

|I| +
∑

k �∈I

1
‖∇gm(k)(xk)‖2

∗

)

4.2. On the Advantages of Using the Method with Restarts in the Strongly Convex Case

To demonstrate the advantages of Algorithm 3 as compared to Algorithm 1, a few numerical
experiments were performed. Consider various 1-strongly convex objective functionals f , which have
a Lipschitz gradient:

Example 1.

f(x) =
L − μ

4

{

1
2

[

x2
1 +

n−1
∑

i=1

(xi − xi+1)2
]

− x1

}

+
μ

2
‖x‖2,

where μ = 1, L = 10000, and n = 10.

Example 2. f(x) = max{f1(x), f2(x), f3(x)}, where

f1(x) =
1
2
(

x2
1 + x2

2 + 2x2
3 + 4x2

4 + x2
5 + 5x2

6 + 3x2
7 + 2x2

8 + 4x2
9 + 8x2

10

)

−
10
∑

i=1

ixi + 5,

f2(x) =
1
2
(

2x2
1 + x2

2 + 3x2
3 + 4x2

4 + 2x2
5 + 5x2

6 + x2
7 + 6x2

8 + 7x2
9 + 2x2

10

)

−
10
∑

i=1

(10 + i)xi + 6,

f3(x) =
1
2
(

x2
1 + x2

2 + 2x2
3 + 3x2

4 + 5x2
5 + x2

6 + 4x2
7 + 2x2

8 + 3x2
9 + 6x2

10

)

−
10
∑

i=1

(20 + i)xi + 7.

Example 3 (regression problem [22]).

f(x) =
1
2
‖Ax − b‖2 +

μ

2
‖x‖2, where
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A =

⎛

⎜

⎜

⎜

⎝

5 3 3 5 4 4 3 3 5 1

2 4 3 5 3 4 2 2 5 4

5 2 1 4 1 1 2 3 5 5

⎞

⎟

⎟

⎟

⎠

,

for b = (1, 2, 3)� and μ = 1.

Example 4 [22].

f(x) =
10
∑

i=1

ix4
i +

1
2
‖x‖2.

Example 5 [22]. The following test is carried out for a smoothed strongly convex version of the noise
reduction problem

f(x) =
1
2
‖Ax − b‖2 + λ‖x‖l1,τ +

μ

2
‖x‖2,

A =

⎛

⎝

9 2 4 2 2 3 6 3 5 5

6 7 2 4 8 6 8 8 5 1

⎞

⎠ ,

b = (1, 2)�, μ = 1, λ = 0.05, τ = 0.0001

and ‖ · ‖l1,τ is defined as follows:

‖x‖l1,τ =

{

|x| − τ
2 , if |x| ≥ τ,

1
2τ x2, if |x| < τ,

if x is a scalar and

‖x‖l1,τ =
n
∑

i=1

‖xi‖l1,τ

if x = (x1, x2, . . . , xn) is a vector of R
n.

Note that the quadratic term μ‖x‖2/2 guarantees strong convexity of the objective function.

Consider the functional constraints of the form g(x) = G(x) + S(x) for

S(x) =
1
2
‖x‖2, G(x) = max

i∈1,m
gi(x),

where gi(x) = 〈αi, x〉 + βi, α�
i are the rows of the matrix
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1 1 1 1 1 1 1

7 8 6 2 9 2 3 3 2 6

6 3 4 3 5 1 6 3 2 8

3 5 2 7 8 3 2 1 5 2

2 3 1 8 1 2 1 1 5 8

1 8 9 1 3 5 1 3 5 2

1 7 8 5 5 9 3 1 6 4

7 3 5 8 9 1 8 7 8 8

6 4 6 2 9 2 3 1 6 3

2 3 4 4 2 1 9 1 1 8

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
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Table 3. Comparison of the results of work of Algorithms 1 and Algorithm 3

Iterations Time Iterations Time

Algorithm 1 Algorithm 3

Example 1 115 973 9:16 95 447 7:37

Example 2 57 798 7:01 45 455 5:14

Example 3 56 874 5:02 50 747 4:18

Example 4 13 720 1:15 6 764 0:38

Example 5 64 324 6:04 55 073 4:52

whereas the constants βi are zero.
We assume that there is the standard Euclidean distance and the corresponding prox structure, and

X = B1(0) =
{

x = (x1, x2, . . . , x10) ∈ R
10 | x2

1 + x2
2 + · · · + x2

10 ≤ 1
}

,

the initial approximation

x0 =
(1, 1, . . . , 1)

‖(1, 1, . . . , 1)‖ , Θ0 = 3, R0 = 2,

and the accuracy ε equals 0.05.
The results of implementing Algorithms 1 and Algorithm 3 are presented in Table 3, where the

number of iterations and the running time (in minutes and seconds) of each of these algorithms are
given.

All calculations were performed using the Python 3.4 software on a computer equipped with Intel(R)
Core(TM) i7-8550U CPU @ 1.80 GHz, 1992 MHz, 4 Core(s), 8 Logical Processor(s). The computer’s
RAM was 8 GB.

It is seen from Table 3 that Algorithm 3 works faster than Algorithm 1.
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